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ABSTRACT: Following our pioneering studies on the direct and efficient
introduction of derivatizable hydroxyl handles into the valinomycin (VLM, 1)
structure, a K+-ionophore with potent antitumor activity, the ensuing conjugable
analogues (HyVLMs 2, 3, and 4) have herein been compared to the parent
macrocycle for their potential antiproliferative effects on a panel of cancer cell lines,
namely, human MCF-7, A2780, and HepG2, as well as rat C6 cells. On the basis of
IC50 values, we find that hydroxyl analogues 3 and 4 are only moderately less active
than 1, while analogue 2 experiences a heavily diminished activity. Cytofluorimetric
analyses of MCF-7 cells treated with HyVLMs suggest that the latter depolarize
mitochondria, thus retaining the typical VLM behavior. It is likely that C6 cells, for
which the exceptionally potent cytotoxicity of VLM has never reported previously,
follow the same fate, as evidenced by alteration of mitochondrial morphology upon
incubation with each ionophore.
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Nature is an enormously rich source of potent anticancer
drugs, linear and cyclic peptides, depsipeptides, and

macrolides being the most renowned leading examples.
However, most of such natural products, albeit highly cytotoxic,
are poorly selective, with the obvious consequence that their
high therapeutic potential cannot be advantageously exploited.
In spite of this, ligand-mediated targeting of anticancer
therapeutics (LTT) has recently emerged as an elegant and
powerful approach to selectively convey drugs or pro-drugs to
pathological cells. Excellent reviews covering the many facets of
this rapidly advancing area have recently appeared.1−3

In view of the recent renewed interest in ionophores for
human cancer therapy,4−6 we have taken up the challenge to
build anticancer LTTs based on the potent and broad-spectrum
antiproliferative activity of the K+-ionophore valinomycin
(VLM, 1), a naturally occurring cyclodepsipeptide produced
by several Streptomyces.7 Chemically, it consists of a three-
repeating sequence of the tetramer D-α-hydroxyisovaleryl-D-
valyl-L-lactyl-L-valyl (D-Hyi-D-Val-L-Lac-L-Val) cyclically ar-
ranged to form a 36-membered macro-ring with an internal
cavity designed to specifically accommodate K+, which can
hence be safely shuttled across membranes.7 This causes
dissipation of mitochondrial transmembrane potential (ΔΨm)
and induction of apoptosis, which has been shown in several

mammalian cell types,8,9 including a number of tumor cell
lines.6,10,11 Because of its unique properties, VLM has captured
the attention of many searchers devoted to various fields of
science, so that studies detailing its mechanism of action,12−14

as well as concerning the synthesis of analogues have continued
unabated over the past decades.15

Apparently, only few studies have put forward the feasibility
of VLM-based drug conjugates.16 Perhaps, the lack of any
derivatizable chemical handles (e.g., NH2, SH, OH, COOH,
etc.) in the molecular structure has represented a major
obstacle to VLM derivatization. This severe limitation could, in
principle, be overcome by adopting synthetic strategies that
conjugate efficiency, high selectivity, as well as the possibility of
operating under the very mild conditions (e.g., pH close to
neutrality, ambient or subambient temperature) that are
normally desirable when handling most of natural products.
Along these lines, we have recently developed a convenient

route to incorporate hydroxyl handles into the VLM molecular
structure, based on the direct reaction of the latter with
methyl(trifluoromethyl)dioxirane (TFDO) under extremely
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mild conditions.17 This allowed to readily access a three-entity
library of monohydroxyl VLM analogues (HyVLMs), carrying
the OH group at the isopropyl side chain of a D-Hyi (2), D-Val
(3), or L-Val (4) residue (Chart 1).17

At this stage, we turn to inspect the levels of bioactivity
retained by the modified VLMs 2−4. On the basis of assays for
mitochondrial dysfunction induced by analogues 2−4 on
isolated rat-liver mitochondria, we have recently proved that
hydroxyl groups reduce the bioactivity of the various analogues
2−4 to an extent that depends on the molecular site involved in
the hydroxylation, so that the following order of potency could
be established: 1 > 3 ≥ 4 > 2.18 However, we found that
analogues 2−4 strictly retain the cation binding properties of
the parent VLM. Nonetheless, on the way to the smart
targeting of VLM analogues 2−4, the essential missing step that
we provide herein is the in vitro evaluation of their antitumor
activity relative to VLM. To this purpose, the potential
antiproliferative effects of VLM and HyVLMs were evaluated
on four different cancer cell lines, namely, rat C6 glioma cells,
MCF-7 human breast carcinoma cells, A2780 human ovarian
carcinoma cells, and HepG2 liver hepatocellular carcinoma
cells. In all experiments, cancer cell lines were treated with
concentrations of compounds 1−4, ranging from 0.0001 to 10
μM, at different incubation times (24, 48, and 72 h), and cell
viability was determined quantitatively by the MTT conversion
assay.19 Table 1 collects the IC50 values obtained after 72 h of
incubation, while the histogram in Figure 1 shows the time-
dependent trend of C6 cells survival upon exposure to 0.01 μM
1−4 and is representative for the other cases examined.
In agreement with literature,6 data in Table 1 indicate that

VLM (1) displays different cytotoxic effects on the panel of
selected cancer cell lines, which are dose- and time-dependent
(Figure 1); the estimated IC50 values cover 3 orders of
magnitude, ranging from the low nM for C6 and HepG2 to the
low μM for MCF-7 and A2780 cell lines. However, analogues 3
and 4 evidence a similar dose- and time-dependent cytotoxic

effect, although anywhere slightly less marked than 1. By
contrast, analogue 2 is remarkably over 200 and 400 times less
potent than VLM for HepG2 and C6 cancer cells, respectively,
pointing to a major role of the D-Hyi side chains over the D,L-
Val counterparts in the VLM bioactivity. In all cases examined,
the experimental IC50 values follow the order 1 < 4 ≤ 3 < 2,
matching very closely the relative potency of these ionophores
based on their effect on mitochondrial bioenergetics parame-
ters.18

Because VLM is known to affect the vitality of healthy
cells,8,9,20 we deemed it appropriate to inspect the HyVLM
effects on a normal cell line. To this end, the cytotoxicity of
compounds 1−4 on nontumorigenic breast epithelial cells
(MCF-10A) were evaluated in comparison with those obtained
for the MCF-7 breast carcinoma cell line. We have chosen this
normal cell line in order to evaluate the behavior of normal
breast tissue when it is in the presence of such drugs.
Accordingly, MCF-10A cells were incubated for 72 h with
concentrations of 1−4 corresponding to their IC50 values for
MCF-7 cells (Table 1). Under these conditions, MCF-10A cells
were found to be more resistant to VLM and to its analogues,
with a cell survival ranging from 50 to 85% (MTT conversion
assay).
To highlight the antiproliferative activity of compounds 1−4,

we evaluate their ability to interfere with the cells cycle
progression of MCF-7 cells by flow cytometry. It is well-known
that VLM is a potent apoptotic inducer.11,12,21 However, in our
preliminary experiments, cells treated with compounds 1−4
showed only a marked accumulation in S phase after 24 h of

Chart 1. Valinomycin (1) and Hydroxyl Analogues Thereof
(2−4) Arising from Selective Oxyfunctionalization with
TFDO

Table 1. In Vitro Growth Inhibition of Various Tumor Cell
Linesa

IC50
b (μM)

compd A2780 MCF-7 HepG2 C6

1 2.18 1.77 0.0008 0.0004
2 >10 >10 0.1971 0.1752
3 4.53 3.85 0.0043 0.0024
4 2.51 3.91 0.0049 0.0029

aConcentration-cell viability profiles for VLM and HyVLMs tested on
various tumor cell lines in vitro after 72 h of incubation. The cells were
treated with the compounds at different concentrations, and the % of
cells viability was calculated. Each point represents a mean value of
three independent experiments performed in duplicate. bThe
concentration inducing 50% cell survival inhibition.

Figure 1. Cell survival of rat C6 glioma cells exposed to compounds
1−4. Cells were seeded in 96 well culture plates at a density of 10,000
cells/well. Compounds were added at 0.01 μM concentration, and
plates were incubated at 37 °C in CO2 incubator for 24 to 72 h. MTT
was used to determine viable cells. Same experiment was performed on
A2780, MCF-7, and HepG2 cell lines (data not shown).
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incubation, irrespective to the utilized concentrations (Figure 2;
Table S1, Supporting Information). As already suggested by
Iguchi et al., an accumulation in S phase could be correlated to
apoptosis through the modulation of MAPK and mevalonate
pathways.22,23 After 72 h of incubation, only VLM showed a
marked accumulation of cells in the G2/M phase, which might
be compatible with an induction of apoptosis. However,
analogues 2−4 showed quite normal cell cycle histograms,
suggesting that the residual cells begin to cycle, and perhaps
apoptosis, along with other cell death mechanisms, might be at
work.
Although these mechanistic aspects are under investigation,

flow cytometry experiments run on MCF-7 cells stained with
the mitochondria-specific fluorescent probe JC-124 indicate that
HyVLMs, similarly to VLM, induce ΔΨm dissipation, an event
that is known to precede the VLM-triggered apoptosis.11,12,21

In particular, we found that the percentage of JC-1-loaded
MCF-7 cells with depolarized mitochondria, upon exposure to
compounds 1−4 for 72 h, were 16, 8.9, 12.1, and 15.6%,
respectively, as opposed to a 1% of MCF-7 control cells. It is
noteworthy that these percent values strictly parallel the order
of cytotoxicity of compounds 1−4 (IC50 values of Table 1), as
well as their relative order of efficiency (1 > 3 ≈ 4 > 2) in
depolarizing isolated rat-liver mitochondria.18

It is worth mentioning that this work represents, to our
knowledge, the first study describing the effect of VLM on C6
glioma cells. The low IC50 of VLM and HyVLMs for these
cancer cells compare favorably with the higher value (IC50 =
0.73 μM) displayed by the most popular cis-platin compound;25

hence, envisaging the potential application of analogues 2−4 in
the treatment of this aggressive neoplasia. The effect of VLM
and HyVLMs on C6 cells was further explored by analyzing the
structure of the mitochondrial network in these cells treated
with such ionophores (Figure 3). Figure 3i shows a
representative morphological image of control C6 glioma
cells where the typical tubular interconnected mitochondrial
network is evident. In contrast, cells treated with 50 nM of 1
(ii), 3 (iii), and 4 (iv) or with 1 μM of 2 (v) exhibit, after 72 h
of exposure, fragmentation of the mitochondrial network with
the CMXRos-fluorescence spread into the cytosol and nucleus.
Although the details of the VLM and HyVLM action on C6

require further careful inspection, it seems likely that
compounds 1−4 induce cell death by targeting mitochondria.
To conclude, this preliminary in vitro investigation on the

potential antiproliferative effect on cancer cells of conjugable
valinomycin derivatives, evidenced that these compounds (2−
4) are, to a different extent, less cytotoxic than the parent drug
(1), but still pharmacologically prominent. As these newly
VLM analogues possess the extra benefit of a derivatizable
chemical handle, the results described herein encourage us in
the future development of ligand-targeted compounds 2−4 as
potential anticancer therapeutics.
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